Progressive Education Society's Modern College of Arts, Science and Commerce, Ganeshkhind, Pune-411016 (Autonomous)

B.Sc. Blended Program

(A degree of Savitribai Phule Pune University equivalent to the degree of University of Melbourne)

End Semester Examination : April 2025

Program: B.Sc. Blended Semester:VI SET: A

Program (Specific): B.Sc.Blended(Chemistry)

Class: T.Y.B.Sc.Blended

Max.Marks: 50

Name of the Course: Solid state Chemistry and its Applications

Course Code: CHM601 Credit: 3 Time: 2½ hrs

Paper: I

Note:

1) All questions are compulsory.

- 2) Figures to the right corner indicate full marks
- 3) Use of scientific calculators is allowed.
- 4) Draw diagrams wherever necessary.
- 5) Use only Black or blue ink/ball/gel pens for writing.

Q1] Select the correct option (Any 10).

 $[10 \times 1M = 10 M]$

- 1) What is SEM?
- a. Standard Electron Magnetism
- b. Standard Enlarge Magnification
- c. Scanning Electron Microscope
- d. Scanning Enlarge Microscope
- 2) The top to bottom approach is —----.
- a. Atoms \rightarrow Clusters \leftarrow Nanoparticles \leftarrow Powder \leftarrow Bulk
- b. Atoms ← Clusters ← Nanoparticles ← Powder ← Bulk
- c. Atoms \rightarrow Clusters \rightarrow Nanoparticles \rightarrow Powder \rightarrow Bulk
- d. Atoms \leftarrow Clusters \rightarrow Nanoparticles \rightarrow Powder \leftarrow Bulk
- 3) The atom at its position is misplaced in —--- defect.
- a. Frankel
- b. Schottky
- c. impurity
- d. extrinsic

- 4) In Bragg's equation $n\lambda = 2d \sin \Theta$; the incident wavelength is represented by —--.
 - a. 1
 - b. d
 - c. Θ
 - d. λ
- 5) What is the type of the following crystal system?

- a. FCC
- b. BCC
- c. rutile
- d. wurtzite
- 6) How many atoms are there in the given unit cell of the crystal?

1

- a.
- b. 2
- c. 4
- d. 8
- 7) The semiconductor with some impurity are —----semiconductors.
 - a. intrinsic
 - b. extrinsic
 - c. super
 - d. non reactive
- 8) Semiconductor nanoparticles are known as —---.
 - a. quantum dots
 - b. non metallic
 - c. non ductile
 - d. transparent
- 9) Identify the method of nanoparticle synthesis.

- a. Inert gas condensation
- b. Ball mill
- c. Laser pyrolysis
- d. Electric discharge

- 10) Which among the following is not used to analyze nanoparticles?
 - a. SEM
 - b. TEM
 - c. EDAX
 - d. polarimetry
- 11) Noble metals show strong—----.
 - a. insulation
 - b. plasmonic resonance
 - c. light
 - d. heat
- 12) The bulk materials are fast and high in —-----.
 - a. absorption and adsorption
 - b. Transmittance
 - c. speed
 - d. liquid Materials

Q2] Answer in brief. (Any 10)

 $[10 \times 2M = 20 M]$

- 1) Compare the structures of C60 and C240. Show that they are fullerenes.
- 2) Draw schematic diagram of Transmission Electron microscopy.
- 3) Compare the rutile and wurtzite crystal types.
- 4) What are perovskites? Discuss its applications.
- 5) Write a note on non stoichiometric compounds.
- 6) What are semiconductor nanoparticles? Name its applications.
- 7) How are nanoparticles analyzed using scanning microscopy?
- 8) Explain the electrochemical method of synthesis of nanoparticles.
- 9) Discuss the application of nanoparticles in environmental studies.
- 10) Discuss how the optical property of nanoparticles changes with size.
- 11) Discuss the use of carbon nanotubes as a smoke sensor.
- 12) What are biosensors? Explain its functioning.

Q3] Solve the following.

a) Identify the crystal structure from the following data for NaCl crystal. [10M] Use graph paper for plotting the necessary graph.

2 theta	27.36	31.69	45.43	53.85	56.45	66.20	73.04
---------	-------	-------	-------	-------	-------	-------	-------

Given: Wavelength = 1.54 A°

Molecular weight of NaCl(m) = 58.44 amu; Avogadro number (N) = $6.022 \times 10^{23} \, \text{mol}^{-1}$ Write the results in the following format

Sr no	Details	Results
1	Crystal type	
2	Lattice constant	
3	Number of Molecules per unit cell	
4	Density of the crystal	

b) Solve the following (Any 2).

 $[2 \times 5M = 10M]$

- 1) Discuss the band theory of solids in detail.
- 2) Discuss the synthesis of nanoparticles by chemical method.
- 3) What is the Born Haber cycle? Construct Born Haber Cycle from the following reactions.

$$\begin{array}{c} Mg_{(s)} + Cl_{2(g)} \, \to \, MgCl_{2(s)} \\ Mg_{(s)} \, \to \, Mg_{(g)} \\ {}^{1}\!\!\!/_{2} \, Cl_{2(g)} \, \to \, \, 2Cl_{(g)} \\ Mg_{(g)} \, \to \, \, Mg^{+}_{(g)} + \, e- \\ Mg^{+}_{(g)} \, \to \, \, Mg^{2+}_{(g)} + \, e- \\ Cl + \, e- \, \to \, Cl^{-} \\ Mg^{2+}(g) \, + 2Cl^{-}_{(g)} \, \to \, MgCl_{2(s)} \\ -x \end{array}$$